您现在的位置是: 首页 > 人工智能 >人工智能案例报告,人工智能案例报告范文

人工智能

人工智能案例报告,人工智能案例报告范文

2025-02-28 04:31:03 人工智能 0人已围观

大家好,今天小编关注到一个比较有意思的话题,就是关于人工智能案例报告的问题,于是小编就整理了5个相关介绍人工智能案例报告的解答,让我们一起看看吧。

人工智能应用领域案例?

1、智能制造领域。 标准化工业制造中信息感知,自主控制,系统协调,个性化定制,检查和维护以及过程优化的技术要求。

人工智能案例报告,人工智能案例报告范文

2.智能农业领域。在具有复杂应用环境和多样应用场景的农业环境中,标准化技术要求,例如特殊传感器,网络和预测数据模型,以协助农产品的生产和加工并提高农作物的产量。

ai在建筑行业的实例有哪些类型?

AI在建筑行业的应用有很多,以下是具体的实例:

个人防护装备检测:AI可以检测工人的个人防护装备是否佩戴齐全,以及是否正确佩戴。

激光扫描机器人+BIM模型:AI机器人可以在工地上进行激光扫描,并将扫描数据与BIM模型进行匹配,以检测现场的工作对象是否正确安装。

人工智能在作物育种中的成功案例?

2020年,中国科学院田志喜、梁承志、韩斌等研究者通过全基因组重测序对全球2898份具有遗传多样性的大豆种质材料进行分析和鉴定,进而构建了世界首个大豆泛基因组。

本次泛基因组研究所选用的大豆种质材料具有重要的育种和生产价值,其中“满仓金”“十胜长叶”等种质材料作为骨干核心亲本已各自培育出“黑河43”“齐黄34”等上百个优良新品种,这些品种被各个大豆主产区大面积推广种植。

“分子标记辅助选择、全基因组选择等是分子育种的代表性技术,其旨在对大豆内源基因进行聚合或修饰,赋予大豆新的性状,而这些育种技术的应用都依赖于对大豆功能基因组的深入研究和全面了解。”于彩虹说。

因此,大豆泛基因组和相关自然群体遗传变异的发布为大豆育种技术研究提供了重要的资源和平台,也为推进大豆分子设计育种、提升大豆产量奠定了基础。

python人工智能编程例子?

Python在人工智能中的实际运用,以下两例就是:

1.TensorFlow最初是由谷歌公司机器智能研究部门旗下Brain团队的研究人员及工程师们所开发。这套系统专门用于促进机器学习方面的研究,旨在显著加快并简化由研究原型到生产系统的转化。

2.Scikit-learn是一套简单且高效的数据挖掘与数据分析工具,可供任何人群、多种场景下进行复用。它立足NumPy、SciPy 以及matplotlib构建,遵循BSD许可且可进行商业使用。

智能医疗产业有哪些应用典型案例?

运用人工智能技术识别及分析医疗影像,帮助医生定位病症分析病情,辅助做出诊断。这是属于目前较为典型的一个案例。

具体来说,人工分析的缺点很明显,第一是不精确,只能凭借经验去判断,很容易误判。第二是缺口大,放射科医师数量增长远不及影像数据增长。

医疗影像行业的人工智能实现流程大致为:影像数据的预处理—>样本清洗、打标签à模型搭建及训练调试à大规模数据的训练、验证得到深度学习网络模型,以上流程为人工智能的线下训练过程,最终输出为深度学习模型。接着就可以用用生成的模型进行线上预测或辅助判断。

浪潮提供医疗影像端到端人工智能解决方案,如下图所示,实现如下三个功能。

  

(1) 样本数据预处理。医院各个检验科如CT,BT,CR等,把医疗影像数据从终端设备通过万兆/IB网络,传输到并行存储中,数据预处理CPU平台(多个双路CPU服务器NF5280M5组成的集群)从存储中读取数据,运行边缘检测分割、区域增长分割、种子算法等程序,获取目标数据,然后打标签形成训练样本库,存放到并行存储中。CPU程序的管理、调度、监控将由统一管理平台AIStation完成。

  

(2) 模型训练。模型训练GPU集群(配置单机8卡GPU服务器,如NF5288M5)将读取训练样本库数据从并行存储中,并加载CNN模型,运行深度学习框架,如TensorFlow,Caffe,Mxnet等对初始模型进行训练,经过对大量数据样本的学习训练生成最终模型。训练中涉及多个训练任务的提交,其资源管理、调度、监控将由统一管理平台AIStation完成。

(3) 模型应用。在医院医生科室将部署医生辅助诊断服务器P8000(台式服务器,配置多块P4或FPGA卡),训练好模型将被加载到P8000上。检验科发送影像到P8000上,P8000进行识别,快速实现智能化诊断。

到此,以上就是小编对于人工智能案例报告的问题就介绍到这了,希望介绍关于人工智能案例报告的5点解答对大家有用。

相关文章